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Synthetic seismic data generation for automated AI-based procedures 
with an example application to high-resolution interpretation

Abstract
This paper discusses the generation of synthetic 3D seismic 

data for training neural networks to solve a variety of seismic 
processing, interpretation, and inversion tasks. Using synthetic 
data is a way to address the shortage of seismic data, which are 
required for solving problems with machine learning techniques. 
Synthetic data are built via a simulation process that is based on 
a mathematical representation of the physics of the problem. In 
other words, using synthetic data is an indirect way to teach 
neural networks about the physics of the problem. An important 
incentive for using synthetic data to solve problems with artificial 
intelligence methods is that with real seismic data the ground 
truth is always unknown. When generating synthetic seismic 
data, we first build the model and then calculate the data, so the 
answer (model) is always known and always exact. We describe 
a methodology for generating on-the-fly simulated postmigration 
(1D modeling) synthetic data in 3D, which are high resolution 
and look similar to real data. A wide range of models is covered 
by generating an unlimited number of data examples. The syn-
thetic data are built from impedance models that are constructed 
through geostatistical simulation of real well logs. With geosta-
tistical simulation, we can describe various geologic variance 
models in 3D and obtain realistic images. To cover a broad range 
of scenarios, we need to generalize the seismic data story by 
randomly perturbing many parameters including structures, 
conformity styles, dip-strike directions, variograms, measured 
input logs, frequencies, phase spectra, etc.

Introduction
In recent years, there has been growing interest in the use of 

machine learning (ML) technologies for processing and interpret-
ing seismic data. Many procedures that traditionally have been 
performed using deterministic methods and algorithms can be 
effectively replaced by neural networks and other artificial intel-
ligence (AI) methodologies, improving simplicity, efficiency, and 
automation. Examples include seismic horizon and fault interpreta-
tion using convolutional neural networks (CNNs) (Huang et al., 
2017; Di et al., 2018; Guo et al., 2018; Lowell and Paton, 2018; 
Wu and Zhang, 2018; Zhao and Mukhopadhyay, 2018; Wu et al., 
2018, 2019; Bi et al., 2021), salt classification (Waldeland et al., 
2018; Shi et al., 2019), seismic migration (Freitas et al., 2020; 
Zhang and Gao, 2022), and others. This data training approach 
replaces the algorithmic representation of physical procedures as 
well as other traditional signal processing methods. Instead of 
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formulating a mathematical method to solve specific data problems 
that can be described theoretically, we use many data examples 
to teach a system about the nature of the problem and to provide 
a solution. The advantage is huge. Problems that are too complex 
to be described theoretically can be solved through learning from 
data examples, and several steps can be combined into one. 
Procedures that require substantial human resources can be auto-
mated with this approach. Seismic interpretation is a good example 
of a task that requires many highly skilled work hours. It can be 
replaced, to a large extent, by ML technologies.

The main challenge with ML technologies is data examples. 
With seismic data, there is a limit to how much data exist. The 
data sets are large and cumbersome, and many data sets are 
proprietary and therefore not available to most researchers. In 
addition, large amounts of data are required to solve any problem 
with ML. The data need to cover a wide range of geophysical 
problems, and the correct answer to the problem at hand needs 
to be available for each example data set. In other words, we need 
a large set of input/true-output pairs. However, with seismic data, 
the true answer is in the subsurface and is mostly unknown. The 
alternative to real data is synthetic data, and many in the geophysi-
cal community use this solution (Wu and Hale, 2016; Geng et al., 
2019; Wu et al., 2019, 2020; Bi et al., 2021). Using synthetic data 
is also a common practice in other disciplines that apply ML 
technologies. The idea that real geophysical problems can be solved 
by training neural networks with synthetic data has already been 
demonstrated by Canning et al. (2017), Geng et al. (2019), Wu 
et al. (2019, 2020), and Bi et al. (2021). 

Using synthetic data is not only a way to address a shortage 
of data, it is also a way to introduce physics into the solution. 
When generating synthetic data, the physics of the problem at 
hand is introduced because synthetic data are always generated 
by some simulation process that mimics a physical process or 
mathematical idea. Consequently, the algorithm used to generate 
the synthetic data controls what the AI system learns, and in this 
indirect way, teaches it the physics/mathematics of the problem. 
Furthermore, using synthetic data where the ground truth is 
known removes the human bias that is too often associated with 
input/interpreted output pairs created from real data. 

The need for a good method for generating realistic synthetic 
data emerged when we began developing an automated high-
resolution interpretation technology in order to automatically 
interpret internal horizons within a given layer (Vizeu et al., 2021). 
Here, we mainly discuss a method for generating the synthetic 
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seismic data for training a neural network. The methodology can 
be used to solve a wide range of seismic-related problems in seismic 
data processing, interpretation, and inversion. Note that the 
synthetic data generation is based on 1D convolution modeling 
and does not involve 3D wave equation simulations. It is therefore 
relevant to postmigration challenges when all seismic events are 
positioned correctly in 3D space and the amplitude is proportional 
to the reflection coefficient. One-dimensional convolution model-
ing is a good approximation for this state. Seismic interpretation 
is one example of a postmigration problem. However, a similar 
rationale can be used to generate synthetic pseudomigrated gathers 
involving Zoeppritz equations for the prestack amplitudes. Such 
synthetic gathers can be used to train an AI system to solve local 
gather processing tasks including prestack amplitude inversion, 
noise removal, etc.

Relative geologic time as a structural framework
A structural framework is often required before generating 

synthetic data. Relative geologic time (RGT) is a fantastic way 
to represent structures on a regular 3D grid because it can provide 
detailed vertical resolution. RGT refers to the geologic assertion 
that a reflector or layer is related to a specific geologic event that 
occurred at a specific geologic time. The layer is deformed in depth 
through geologic events such as folding and faulting that occurred 
over geologic time. Figure 1 shows an example of an RGT section 
where colors represent the geologic time (RGT value). The values 
are relative and are often normalized between 0 and 1. Tracking 
a constant value on an RGT grid will yield the layer geometry 
(Figure 1).

The concept of RGT was introduced 
by Wheeler (1958), more recently devel-
oped by Stark (2003, 2004), and built 
into a full mathematical framework by 
Mallet (2004) and Moyen et al. (2004). 
It is important to note that RGT is a 
simplified representation of the geology, 
and it works well in relatively simple 
situations. Complex geology involving 
extensive faulting with large throws and 
heavy layer deformation may need a 
more comprehensive description, as 
formulated by Mallet (2004) in the 
UVT framework. The UVT transform 

is a 3D mapping of the present-day geology to a pseudodepositional 
space, where the effects of faulting and folding have been removed. 
The U and V components represent the paleocoordinates where 
each particle of sediment was deposited, and the T component is 
the RGT. The UVT transform is more general. It enables precise 
modeling of geologic properties in the depositional space and 
their consistent transfer to the present-day geologic space with a 
minimum amount of deformation, regardless of the complexity 
of the geologic structure. A reverse fault is an example of a com-
plication because RGT does not increase monotonously with 
depth (Figure 2). Therefore, a full UVT parameterization is 
required to describe complex structural geometry. Still, for many 
seismic problems, RGT is sufficient to provide the required struc-
tural framework. 

In the context of this paper, RGT is used to build synthetic 
data sets for training neural networks. To generate nontrivial 
RGT models, we first build the geometric framework. A variety 
of software packages are available that can build a 3D geometric 
structure from a set of horizons and faults. We use SKUA-
GOCAD (Gringarten et al., 2008) for this because it can deal 
with complex geologies. The basic set of structural frameworks 
is built from real interpreted horizons and then filled with RGT 
values using a variety of conformity styles per layer (e.g., propor-
tional, toplap, baselap, etc.) (Figure 3) to generate the basic set 
of RGT data sets. The conformities are controlled by the geometry 
of the top and base of each layer, while the internal conformity 
style varies between the layers in a random fashion. 

Synthetic data for training neural networks
To train a neural network with synthetic data, there is a need 

to generate data that look like real data and have real data char-
acteristics. One of the main drawbacks in using synthetic data is 
that they look artificial. They are often very smooth and too good 
for solving real data problems with neural networks. The most 
common solution (Geng et al., 2019; Bi et al., 2021) is to add 
noise to the data, which is normally some kind of random noise. 
However, random noise has limited effect on CNNs because it 
acts somewhat like a filter. Moreover, random noise is added to 
the seismic data and not included in the model. 

We have developed a method for generating synthetic seismic 
data for training neural networks that provides a realistic data set 
on one hand and great variability on the other. A central concept 

Figure 1. Example of an RGT cross section. (a) RGT. The colors represent RGT values. (b) Horizons extracted from RGT at 
constant RGT intervals. (c) Extracted horizons displayed over the seismic section.

Figure 2. Example of RGT for a reverse fault. The complexity of this scenario makes the RGT 
not increase monotonically with depth. 
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is the use of real impedance well logs to obtain realistic subsurface 
variability and geostatistical simulation methods to control the 
overall variance. Randomization on all parameters is another key 
aspect of this methodology. Thus, most perturbations are done 
for the impedance data, and seismic traces are calculated from 
that, instead of perturbing the seismic traces themselves. This 
enables the generation of realistic seismic data as well as variability 
in seismic parameters such as wavelet, frequency, phase, etc. 

The following steps describe the method for building the set 
of synthetic data sets. It begins in 2D:

1) Generate a basic set of RGT data sets as described earlier.
2) Interpolate real impedance well logs 

using sequential Gaussian simula-
tion (SGS) (Goovaerts, 1997) with 
a variety of randomly selected var-
iogram models (Figure 4).

3) Deform the impedance data to
match the selected basic RGT
(Figure 5).

4) Add small structural deformations. 
Apply the deformations to both the
impedance section and the corre-
sponding RGT section (Figure 6).
a) Small faults with randomly

selected fault density, throw,
and direction

b) Small undulations with ran-
domly selected parameters such 
as amplitude, curvature, etc.

c) Possibly other features such
as channels

d) Standard deformations such
as rotation, stretching, squeez-
ing, etc.

5) Perform RGT normalization.
6) Calculate ref lectivity from the

impedance section.
7) Build realistic wavelets with ran-

domly selected parameters (fre-
quency and phase spectra).

8) Convolve the wavelet with the reflectivity traces to generate
2D synthetic data sets.

9) Add random noise.

This methodology enables great variability in the data by
varying structures, wavelets, and stratigraphic variance, as well 
as realistic-looking data sets. Some examples are displayed in 
Figure 7, showing how realistic the data look and the variability 
that can be easily achieved in data character. In fact, an infinite 
number of different data sets that capture much of the seismic 
data characteristics can be generated this way.

Figure 3. Conformity styles used in the synthetic data set. (a) Baselap. (b) Toplap. (c) Proportional.

Figure 4. Examples of impedance data sets generated from well logs using geostatistical simulations (SGS). The input log is 
displayed on the left and is also overlaid on the impedance sections. Three different impedance sections generated by SGS 
are displayed, and all are deformed to the same structural framework (controlled by RGT) (see Figure 5) but produced using 
different 3D variogram models. 

Figure 5. Deforming impedance section according to RGT. (a) An initial impedance section generated by SGS. (b) A random RGT section. (c) Structurally deformed impedance according to 
the RGT section.
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In this workflow, the variability is 
in the impedance model, and the seis-
mic data mainly reflect that. This is in 
contradiction to workflows that perturb 
the seismic data. This provides more 
realistic data because it follows the 
natural process. For example, if we want 
to introduce a fault into the synthetic 
data, we can do it in two ways: 
(1) generate the fault in the impedance 
data and create synthetic data from the 
faulted input or (2) reverse the order
and create synthetic data from the
unfaulted impedance and then intro-
duce the fault into the seismic data. The 
first route may produce reflections from 
the fault plane, while the second route
will result in an artificial-looking fault 
because the seismic data will be torn in 
an artificial way. This is illustrated in
Figure 8. As explained, our training
procedure controls the training by
balancing the ratio of examples with
specific features. In this case, we used
10% of the examples with faults applied 
to impedance and 10% of examples with 
faults applied to seismic.So, 80% of our 
examples do not include faults. This is
another way to solve specific problems
by balancing the training set.

Next, the 2D data sets are extended 
to 3D. The process begins with the 2D 
impedance section (the first line). We 
add more lines to build a 3D cube. The 
second line is a deformed copy of the 
first line. The deformation is very small 
between lines and is done by setting a 
random path at the center of the first 
line and shifting the data up, down, 
or sideways according to the random 
path (one step for each line). Figure 9 
illustrates this concept. A similar 
method can be used for other types of 
deformation (e.g., stretching and 
squeezing) to build the 3D data. 
Finally, we randomly rotate the 3D 
volume to also provide variability in 
the dip-strike directions.

This methodology can provide an 
infinite number of seismic data exam-
ples. We build the synthetic data on the 
fly in parallel to the CNN training 
procedure, randomly selecting patches 
of data from the larger original set of 
RGT data sets. The synchronization 
between data generation and the 

Figure 6. Two examples of additional secondary deformations. The top example is of small faults and the bottom example is of 
small random undulations. In each example, the top row is the original state and the bottom row is the deformed state. RGT 
contours are on the left. Impedance is in the center. Resulting seismic is on the right.

Figure 7. Examples of data variability (within a single RGT section). (a) Impedance. (b) Corresponding seismic amplitude data. 
The difference between these examples is in the variograms. Each example is created with the same structural model but with a 
different variogram.
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training process optimizes the computation time. In addition, 
we statistically control the process by controlling the percentage 
of examples with a specific characteristic. For example, we can 
prefer a larger horizontal variogram by ensuring more data sets 
with large horizontal variograms will be generated, or we can 
provide higher fault density by adding a higher percentage of 
faulted examples.

The synthetic data generation process is very efficient, and 
there is no need to store or manage 
training data. Another important 
advantage is the flexibility to add new 
types of geologic scenarios to the process 
without the need to start over. We 
continue to train the network with new 
examples and continuously see improve-
ments in performance.

This method for generating syn-
thetic data to train neural networks is 
quite general. We demonstrate the 
method here by using it to train a net-
work that provides high-resolution 
interpretation of internal horizons. It 
does so by building input-output 
example pairs in the form of seismic-
stack/RGT pairs (similar to Geng 
et al. [2019], Wu et al. [2020], and 
Bi et al. [2021]). Similar processes can 
be used to generate data for other objec-
tives. For example, one can use a similar 
methodology to generate synthetic 
gathers corrected for normal moveout 
by using simulated P- and S-impedance 
pairs combined with Zoeppritz equa-
tions for the amplitude. Such gathers 
can be used as training data for prestack 
inversion. The main factor that enables 
these data sets to mimic real data so 
well is the geostatistical simulations, 
which allow control over the variance 
of the data. Based on this methodology 
for generating realistic synthetic data 
for training, many seismic processing, 
interpretation, and inversion challenges 
can be solved with AI techniques.

Constructing a CNN that can be 
pretrained with synthetic data so it can 
be applied successfully to a wide range 
of real data sets requires generalization 
of the seismic character. Data character 
is partly represented with the vario-
grams but is also associated with the 
wavelet. To obtain seismic amplitude 
from the acoustic impedance data, 
random wavelets are created for each 
impedance example and are convolved 
with it. The wavelets are generated by 

randomly perturbing the frequency content, the decay as a function 
of frequency, and the phase rotation (Figure 10).

QC: Network evolution 
The described methodology was implemented to generate 

seismic data for automated AI-based interpretation of internal 
horizons on stacked seismic data volumes. We followed Geng 
et al. (2019) to build a U-Net, where input is a seismic patch 

Figure 8. Introducing a fault into the data and comparing two workflows. (a) Introducing the faults into the impedance first. 
(b) Introducing the faults at the end of the workflow after convolution with a wavelet.

Figure 9. Building a 3D impedance data set from a 2D section using a random 3D path. The process starts at the top images and 
progresses downward. The random path is marked with the red curve.
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and the desired output (known as tag in the popular terminology 
of AI) is RGT. We then extracted horizons by following constant 
RGT surfaces (isovalues) and displayed the resulting interpreta-
tion over the seismic data. Interpreters are accustomed to seeing 
the structural information this way, so it is a useful display, even 
though the RGT itself contains more information at a much 
higher resolution. Figure 11 shows a field data example. The 
network was trained with synthetic data sets, generated using 
the methodology described here, and applied to this real data. 
We concentrated on internal horizon interpretation within a 
given layer. Focusing the automated interpretation task this way 
leads to excellent results.

QC is an important part of the 
strategy. QC is done with validation 
data sets, which were generated with 
the earlier noted methodology but not 
used for training. The performance of 
the technique is monitored by following 
the evolution of the process as training 
goes on and more data sets enter the 
training cycle. Training starts with 
simple models, with complexity added 
over time. We could clearly see the effect 
of adding new training data to the 
network’s ability to resolve complex 
scenarios. New model types were added 
when we noticed structures that did not 
resolve well. In other words, we continu-
ously enriched the data model space 
and, in that way, improved the network’s 
performance. Figure 12 shows three 

examples of network evolution and QC, 
monitoring the evolution of the network. 

The left column displays the input data sets, and the last column 
shows the true answer. The center columns show the network 
evolution from left to right, displaying the results as more training 
is done and additional data complications are introduced into 
the process. During the training process, we added two attributes 
to the architecture, replacing two of the three channels of the 
input image. We used instantaneous phase and envelope as the 
two attributes. The green line marks the time step where this 
change occurred, showing immediate improvements in the result. 
The next event in the evolution of the network is the introduction 
of faults into the data example generation process. This event is 
marked by the blue line, which again shows how it affects the 
ability of the process to interpret faults. It is easy to add complexi-
ties, and it does not complicate the program engineering. With 
this strategy, more training means that more data sets are used 
and the network continuously improves with time.

Conclusions
Using realistic synthetic seismic data can be a powerful 

mechanism for training ML algorithms to solve seismic-data-
related problems, but they are not trivial to produce. The data 
need to be realistic, cover a broad range of scenarios, and reproduce 
the geologic features that characterize the problems we aim to 
solve. We have developed an innovative way to generate such 
data sets and demonstrated its effectiveness in one example 
implementation — automatically interpreting internal horizons 
in seismic data. We have shown a real data example to verify the 
concept that synthetic data can be used to train for real data 
problems and that pretraining with a broad set of seismic examples 
can be effective, even without training the specific data set.

The method produces large variability in the seismic character 
and mimics a wide range of geologic features and seismic scenarios. 
Variability is achieved by using geostatistical simulations and 
randomly selected variogram models, as well as randomization 
of many parameters that control the workflow. 

Figure 10. Wavelet generation and random selection of wavelet parameters. Example shows two seismic data sets with different 
wavelets calculated from the same impedance data set. Random frequency contents are generated in the frequency domain with 
varying bandwidth, decay, and phase.

Figure 11. Example of automatic interpretation of internal horizons on real data. Contours 
of RGT isovalues are computed automatically and displayed over the seismic data. The 
network was pretrained with synthetic examples. Note that the pink lines mark the top 
and base of the layer to be interpreted and were provided by the interpreter. They are not 
computed automatically by the process.
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The CNN can be fed by these data 
sets using on-the-fly data generation, 
enabling a very efficient parallel process-
ing workflow. Because the data are cre-
ated on the fly, there is no need to save 
them on disk, and there is no need for 
complex data management and tagging 
strategies. This method also enables 
continuous improvement of the results 
with time, as new information is added 
into the synthetic data creation system. 
A similar but more dedicated strategy 
can be applied to solve some specific 
geologic problems in specific data sets 
by statistically controlling the parameters 
of the synthetic data generation. 
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